

I ENCONTRO DE PESQUISA & DESENVOLVIMENTO TECNOLÓGICO DA UFPR

22 a 23 de novembro de 2018 | Setor de Tecnologia | Curitiba - PR

Caracterização dos Estados Eletrônicos de Pontos Quânticos Auto-Organizados de InAsP Crescidos sobre GaAs

Moos, R.¹, Konieczniak, I.¹, Santos, G. E.¹, Gobbi, A. L.², Bernussi, A. A.³; Carvalho Jr., W.; Medeiros Ribeiro, G.; Ribeiro, E¹.

¹Universidade Federal do Paraná, ²Brazilian Nanotechnology National Laboratory, ³Texas Tech University, ⁴BR Photonics, ⁵Universidade Federal de Minas Gerais

e-mail: rafamoos@gmail.com

INTRODUÇÃO

Pontos quânticos auto-organizados (QDs) podem ser a contribuição mais promissora da física do estado sólido para a computação quântica. Assim, é desejável que algumas propriedades QD, tais como a como energia de emissão, alinhamento de banda e fator-g, sejam manipuláveis. Neste trabalho estudamos os estados eletrônicos dos pontos quânticos auto-organizados de InAsP/GaAs usando experimentos de fotoluminescência (PL), fototransmissão modulada (PT), a anisotropia de forma com a fotoluminescência linearmente polarizada (PLP) e o alinhamento de bandas com a magnetofotoluminescência (MPL). A partir de medidas em função da temperatura e potência de excitação, pode-se identificar as contribuições da wetting layer (WL) nos espectros de PL.

EXPERIMENTO

Amostras

- MOCVD;
- QDs crescidos em GaAs (100): A - InAs **B** - InAsP
 - **C** InAsP
 - **D** InP
 - E InP

Medidas de PL

- Fotoluminescência como função da temperatura e potência de excitação;
- 473 nm laser, 2 a 30 W/cm²;
- Temperaturas de 15 K a 290 K;
- Ajustes gaussianos;

Medidas de PT

- Laser de 633 nm, modulado a 220 Hz;
- Lock-in *amplifier*

RESULTADOS Medidas de PL

Tratamento Térmico

Recozimento em vácuo por 500 K e 120 minutos;.

Medidas de PLP

- Laser de 633 nm;
- Polarizadores;
- Romboedro duplo de Fresnel;
- Ajustes gaussianos

Medidas de MPL

- Laser a 514.5 nm;
- 2 W/cm²;
- 2 K;
- 0 a 12 T, passo de 0,2;
- Configuração de Faraday.

Tratamento Térmico

- O tratamento térmico destrói os QDs, mas não a WL:
- Pode-se identificar a WL para o InAsP/GaAs e para o InP/GaAs;

A energia da WL decresce da amostra A para a amostra **D**.

Medidas de PLP

As amostras de InAsP apresentaram anisotropia de forma do plano

Conclusões

- Medidas de PL mostram evidências de estados excitados para QDs de InAsP / GaAs;
- O WL foi identificado pela primeira vez em QDs de InAsP/GaAs e InP/GaAs usando macro-PL convencional;

1.3 1.2 1.5 Energia (eV)

Segunda contribuição em energia nas amostras de InAsP para temperaturas acima de 100 K;

- Espectros de PL como função da potência de excitação para as amostras **A**, **B**, **C** e **D**.

- A PT confirmou os dados obtidos pela PL;
- Os QDs de InAsP/GaAs apresentam morfologia elíptica no plano;
- Presença do efeito tipo Aharanov-Bohm para amostras **C** – alinhamento de bandas do tipo II

